skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Creer, Simon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT In metabarcoding studies, Linnaean taxonomy assignments of Operational Taxonomic Units (OTUs) or Amplicon Sequence Variants (ASVs) underpin many downstream bioinformatics analyses and ecological interpretations of environmental DNA (eDNA) datasets. However, public molecular databases (i.e., SILVA, EUKARYOME, BOLD) for most microbial metazoan phyla (nematodes, tardigrades, kinorhynchs, etc.) are sparsely populated, negatively impacting our ability to assign ecologically meaningful taxonomy to these understudied groups. Additionally, the choice of bioinformatics parameters and computational algorithms can further affect the accuracy of eDNA taxonomy assignments. Here, we use twoin silicodatasets to show that taxonomy assignments using the 18S rRNA gene can be dramatically improved by curating Linnaean taxonomy strings associated with each reference sequence and closing phylogenetic gaps by improving taxon sampling. Using free‐living nematodes as a case study, we applied two commonly used taxonomy assignment algorithms (BLAST+ and the QIIME2 Naïve Bayes classifier) across six iterations of the SILVA 138 reference database to evaluate the precision and accuracy of taxonomy assignments. The BLAST+ top hit with a 90% sequence similarity cutoff often returned the highest percentage of correctly assigned taxonomy at the genus level, and the QIIME2 Naïve Bayes classifier performed similarly well when paired with a reference database containing corrected taxonomy strings. Our results highlight the urgent need for phylogenetically informed expansions of public reference databases (encompassing both genomes and common gene markers), focused on poorly sampled lineages that are now robustly recovered via eDNA metabarcoding approaches. Additional taxonomy curation efforts should be applied to popular reference databases such as SILVA, and taxon sampling could be rapidly improved by more frequent incorporation of newly published GenBank sequences linked to genus‐ and/or species‐level identifications. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Monitoring the “health” of an ecological community is a critical component of conservation planning. We propose that aggregating intraspecific genetic variation across all species of an ecological community (Community Genetic Distribution; CGD) provides a new way to measure biodiversity that is unifying across taxa, economically scalable, and geographically transferable. Such community-scale data provides information about past dynamics that can unveil processes structuring contemporary biodiversity, and can identify communities that are resilient to perturbation. Using the CGD, high-throughput biodiversity genetic inventories (e.g. metabarcoding/eDNA) can be leveraged to identify the genetic signatures of pristine and disturbed systems. We show examples of the CGD from empirical systems, how it responds through space and time to human disturbance, and how it successfully recovers restoration and succession gradients from metabarcoding datasets with the goal of obtaining insight on community genetic health and developing indicator metrics which can identify communities that are resilient to perturbation. We outline ways in which the CGD complements and extends information in the suite of currently described essential biodiversity variables, and how it can contribute to the targets of the Kunming-Montreal Global Biodiversity Framework. 
    more » « less
    Free, publicly-accessible full text available May 12, 2026
  3. Abstract The study of microbiomes across organisms and environments has become a prominent focus in molecular ecology. This perspective article explores common challenges, methodological advancements, and future directions in the field. Key research areas include understanding the drivers of microbiome community assembly, linking microbiome composition to host genetics, exploring microbial functions, transience and spatial partitioning, and disentangling non‐bacterial components of the microbiome. Methodological advancements, such as quantifying absolute abundances, sequencing complete genomes, and utilizing novel statistical approaches, are also useful tools for understanding complex microbial diversity patterns. Our aims are to encourage robust practices in microbiome studies and inspire researchers to explore the next frontier of this rapidly changing field. 
    more » « less
  4. Abstract Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. Abstract Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions1,2. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores3. The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms4,5
    more » « less